Survey data from employers supports students’ sentiments. When asked what skills students should attain in college, regardless of their field of study, 91 percent of employers indicated, “problem solving in diverse settings,” followed by “direct experience with community problem solving” (Finley and McNair 2013). When employers were asked what skills should receive greater emphasis within colleges and universities, the second most commonly identified skill (81 percent) was “complex problem solving.” The first was critical thinking and analytic reasoning (82 percent); skills that are, arguably, closely linked with problem-solving abilities.

**APPROACH FOR DIRECT ASSESSMENT**

In order to assess the effect of transparent teaching practices on students’ abilities to problem solve, every member of a campus project team agreed to identify two similar courses being taught by a single faculty member; one course would be identified as a control course that did not engage transparency techniques and the other would be the experimental course in which transparency techniques were used. All courses were taught within the general education curriculum. Project campuses were selected, in part, because they expressed an interest in developing their general education curricula to be more intentional, outcomes-based, and integrated into the institutional mission.

Ideally, all faculty participants would have identified two sections of the same course for this research and those sections would have been taught in the same semester. In reality, that research design, while useful for making comparisons, is challenging to execute. Ultimately, for reasons owing to course scheduling, circumstances that delayed course implementation, and communication issues, not all faculty were able to implement a control and experimental course within the project timeline or were unable to submit course data for analysis. Out of thirty-five expected experimental and control courses, data was received for nearly the same number of experimental (N=30) and control (N=29) courses. The total number of students across experimental and control courses was also roughly equivalent, 296 students and 284 students, respectively. Courses were taught either concurrently during the spring 2015 semester or between consecutive terms spanning the fall 2014–summer 2015 terms.

In order to assess improvement in student learning from the beginning to end of the course, faculty identified a pre- and a post-assignment, from each of which they would randomly select ten work products (twenty total work samples from each course). This was done for both control and experimental courses. All faculty members participated in an in-person training session on how to apply the AAC&U Problem Solving VALUE Rubric to student work prior to conducting campus scoring. Following training, each campus team was instructed to collectively score student work samples gathered across courses, such that individual faculty did not score work exclusively from their own courses. Scoring was completed between the summer 2015 and fall 2015 terms. Results from each campus were forwarded to AAC&U for aggregation and analysis.

**WHAT WE LEARNED**

This project provided an opportunity to do the first multi-campus implementation of the AAC&U VALUE rubric. Because sample sizes were relatively small and were drawn from a non-random group of courses, we did not intend for the data gathered from rubric scoring to meet the rigors of statistical analysis. We did, however,